skip to main content


Search for: All records

Creators/Authors contains: "Lorimer, Tom"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stephens, Greg J (Ed.)
    Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans , where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called “eigenworms”). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create “interaction profiles” to represent an individual’s behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons. 
    more » « less
  2. Gilestro, Giorgio F (Ed.)
    Automated analysis of video can now generate extensive time series of pose and motion in freely-moving organisms. This requires new quantitative tools to characterise behavioural dynamics. For the model roundworm Caenorhabditis elegans , body pose can be accurately quantified from video as coordinates in a single low-dimensional space. We focus on this well-established case as an illustrative example and propose a method to reveal subtle variations in behaviour at high time resolution. Our data-driven method, based on empirical dynamic modeling, quantifies behavioural change as prediction error with respect to a time-delay-embedded ‘attractor’ of behavioural dynamics. Because this attractor is constructed from a user-specified reference data set, the approach can be tailored to specific behaviours of interest at the individual or group level. We validate the approach by detecting small changes in the movement dynamics of C. elegans at the initiation and completion of delta turns. We then examine an escape response initiated by an aversive stimulus and find that the method can track return to baseline behaviour in individual worms and reveal variations in the escape response between worms. We suggest that this general approach—defining dynamic behaviours using reference attractors and quantifying dynamic changes using prediction error—may be of broad interest and relevance to behavioural researchers working with video-derived time series. 
    more » « less
  3. Belgrano, Andrea (Ed.)
    We found a startling correlation (Pearson ρ > 0.97) between a single event in daily sea surface temperatures each spring, and peak fish egg abundance measurements the following summer, in 7 years of approximately weekly fish egg abundance data collected at Scripps Pier in La Jolla California. Even more surprising was that this event-based result persisted despite the large and variable number of fish species involved (up to 46), and the large and variable time interval between trigger and response (up to ~3 months). To mitigate potential over-fitting, we made an out-of-sample prediction beyond the publication process for the peak summer egg abundance observed at Scripps Pier in 2020 (available on bioRxiv). During peer-review, the prediction failed, and while it would be tempting to explain this away as a result of the record-breaking toxic algal bloom that occurred during the spring (9x higher concentration of dinoflagellates than ever previously recorded), a re-examination of our methodology revealed a potential source of over-fitting that had not been evaluated for robustness. This cautionary tale highlights the importance of testable true out-of-sample predictions of future values that cannot (even accidentally) be used in model fitting, and that can therefore catch model assumptions that may otherwise escape notice. We believe that this example can benefit the current push towards ecology as a predictive science and support the notion that predictions should live and die in the public domain, along with the models that made them. 
    more » « less
  4. Abstract

    Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab‐based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.

     
    more » « less